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Phase-Sensitive Detection of Bragg Scattering at 1D Optical Lattices
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We report on the observation of Bragg scattering at 1D atomic lattices. Cold atoms are confined by
optical dipole forces at the antinodes of a standing wave generated by the two counterpropagating modes
of a laser-driven high-finesse ring cavity. By heterodyning the Bragg-scattered light with a reference
beam, we obtain detailed information on phase shifts imparted by the Bragg scattering process. Being
deep in the Lamb-Dicke regime, the scattered light is not broadened by the motion of individual atoms.
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In the past, Bragg scattering has proven an extremely
useful tool for observing and analyzing periodic structures
such as crystals [1], molecules [2], or even artificial pho-
tonic band gap materials [3]. More recently, periodic lat-
tice geometries have also been realized with ultracold
atomic ensembles confined in optical standing waves [4].
However, optical Bragg scattering from such optical latti-
ces has been investigated only for the special case of
resonant lattices [5,6], where the optical trapping potential
provides an efficient cooling mechanism for the trapped
atomic cloud. In these experiments, the monitored power
of the diffracted light yields information about the spatial
distribution of the atoms. Cooling is important because it
counteracts heating due to the applied probe light which
destroys the atomic ordering. In far detuned optical lattices
where cooling is absent, Bragg diffraction is thus very
difficult and has not yet been studied. However, in combi-
nation with atomic degenerate quantum gases such purely
conservative optical potentials provide intriguing perspec-
tives for experimental modeling of solid state physics. The
realization of a Mott insulator transition is one prominent
example [7]. In this context, the successful application of
Bragg diffraction methods would offer novel and powerful
possibilities for sensitively probing the properties of such
optical crystals. To minimize the destructive influence of
resonant light absorption, the frequency of the probe laser
beam could be detuned relative to an atomic resonance.
Then, the information is mainly encoded in the phase shift
imprinted by the sample onto the diffracted beam. In order
to readout the phase, the diffracted light must be demodu-
lated by superimposing a reference laser beam, and the
beat signal can then be decomposed into its quadrature
components. No such method has yet been demonstrated.

Such a scheme would be of particular value for inves-
tigating the feasibility of photonic crystals based on optical
lattices. Usually, photonic crystals are periodic dielectric
structures, which interact with light via Mie scattering.
They can exhibit ranges of frequencies for which the
propagation of light is classically forbidden [3]. Although
impressive progress has been made in fabricating photonic
crystals, they suffer from fundamental difficulties in pro-
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viding the required fidelity over long ranges [8] due to
fluctuations in the position and size of the building blocks.
This disorder disturbs those properties of photonic crystals
based on global interference: It reduces the Bragg reflec-
tivity, extinguishes the transmitted light, and ultimately
destroys the photonic band gap. On the other hand, optical
lattices exhibit an intrinsically perfect periodicity. Local
disorder introduced by thermal density fluctuations re-
duces the value of the Debye-Waller factor [9], but does
not affect the quality of the long-range order. To observe
photonic band gaps with optical lattices, one must reach
the regime of multiple reflections of the incident light
between adjacent layers. Unfortunately, this is not easy,
because the efficiency of Bragg scattering is very weak
except close to atomic resonances, where detrimental ab-
sorption due to disordered atoms limits the impact of
coherent multiple reflections. Hence, it is important to
identify clear signatures of multiple scattering in optical
lattices and to develop sensitive tools for their detection. In
the photonic band gap regime, the scattering of light is
completely dominated by the dispersive part of the atomic
polarizability [10], which is significantly strong also off
resonance. We therefore expect that the scattering-induced
phase shift contains sensitive signatures of multiple reflec-
tions and that its measurement will be essential for the
detection of photonic band gaps in future experiments.

In this Letter, we report on the first direct measurement
of the phase shift due to coherent scattering in a one-
dimensional optical lattice. The elastic peak of the atomic
response to incident laser light has been observed in several
experiments. Westbrook et al. [11,12] used a heterodyne
method to beat down the fluorescence of magneto-optically
trapped atoms with a local oscillator to electronically
accessible frequencies. However, in their experiment the
heterodyne signal was integrated over long times, so that
the phase coherence of the elastic scattering process is not
directly observable. In contrast to previous experiments,
we combine the techniques of Bragg scattering and hetero-
dyning for constructing an interferometer: The frequency
beat between the Bragg-reflected light and a reference laser
having a different frequency is demodulated. From the two
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quadrature components, we completely recover the com-
plex scattering coefficient. We ramp the frequencies of
both laser beams, the Bragg beam, and the reference
beam simultaneously, so that the beat frequency is fixed.
Because the elastically scattered light is always phase
coherent, we can look for phase shifts due to the scattering
process. At the same time, our experiment represents the
first observation of Bragg scattering at 1D atomic density
gratings.

The optical layout of our experiment is shown in Fig. 1.
It consists of a high-finesse ring cavity, which has been
discussed in Ref. [13], and a setup for Bragg scattering.
The ring cavity has a finesse of 80 000 and a waist of
wdip � 130 �m. From a titanium-sapphire laser operating
at �dip � 796–820 nm, two light frequencies !� are gen-
erated by means of acousto-optic modulators (AOMs). The
light beams pump the two counterpropagating modes of
the ring cavity near resonance, thus forming a standing
wave, which propagates at a velocity v given by 2kdipv �

!� �!�. For most experiments reported here, we choose
!� � !�. The intracavity power is Pcav � 1–10 W.
Typically Ntot � 107 85Rb atoms are loaded from a stan-
dard magneto-optical trap (MOT) into the standing wave
close to the location of the waist, which is red detuned with
respect to the rubidium D1 line. The cloud is typically a
few 100 �K cold.

The light of a blue laser diode (Toptica LD-0405-
0005-2) operating at �brg � 420:2 nm is split into a probe
beam !i and a reference beam !r. The frequencies of the
beams are controlled by means of AOMs. Some time after
loading the atoms into the standing wave, the light beam !i
is pulsed and shone under an angle of �i � 58� onto the
atoms. The light reflected from the atoms, !s, is detected
under the angle �s � ��i with a photomultiplier (PMT)
(Hamamatsu 1P28) terminated with a resistive load of R �
100 k�. Some experiments were performed by carefully
phase matching the Bragg beam with a reference beam !r
(then the shutter S is open).
FIG. 1. The experimental setup consists of a ring cavity
pumped at 796–820 nm and a diode laser at 420 nm for
Bragg scattering. The shutter S controls the reference beam
used to detect frequency beats between the Bragg and the
reference beam. Photodiodes (PD) record the transmitted probe
power and the beat note between the two cavity modes.
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Our standing wave dipole trap represents a 1D optical
lattice, whose periodicity is 1

2�dip � �=kdip. The Bragg
condition requires �dip cos�i � �brg. To resonantly en-
hance the Bragg scattering, which otherwise would be
negligibly small, we tune the laser to the transition 5S1=2,
F � 3! 6P3=2, F0 � 2; 3; 4, with a natural linewidth of
�brg=2� � 1:3 MHz [9]. During the Bragg pulse sequence,
the repumping laser of the magneto-optical trap is shone
onto the atoms to minimize optical pumping into the
ground state F � 2 level.

The efficiency of Bragg scattering depends critically on
the angle of incidence �i: The acceptance angle is about
0.1�. The scattered light beam has a nearly Gaussian
elliptical shape. It is collimated in the scattering plane
having about the same diameter as the input beam wz �
600 �m. This means that about Ns ’ 1500 planes of the
atomic lattice are illuminated, the lattice itself being lon-
ger. Therefore only a small fraction, N ’ Ntot=5, of the
atoms confined in the dipole trap are illuminated by the
Bragg beam. The radial size of the atomic cloud, �r 	
30 �m, determines the scattered beam divergence in the
direction orthogonal to the scattering plane, wr � �r. We
calculate the solid angle d�s in the far field, where both
beams are divergent and the grating can be considered a
point source as �s 
 2�2brg=�wrwz ’ 6� 10�6 sr.

The power Ps diffracted by Bragg scattering into a
direction d�s can be estimated from [9]
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is the frequency-dependent complex polarizability. "brg
is the Bragg laser detuning. We actually use Ii �
0:2 mW=cm2 incident intensity, which is about one-
tenth of the saturation intensity Isat and corresponds to
the power Pi �

�
2 w

2
zIi 	 1 �W. The sum over individual

atoms represents the structure factor,
P

me
i"kRm �P

me
i2mkbrg�dip cos� � Ns. The Bragg-scattered light power

is proportional to the square of the atom number, as is
verified in Fig. 2(a).

The Debye-Waller factor is given by fDW � ei"kx �

e��"kz
2�2z=2, since only the distribution of atoms along
the lattice normal axis ẑ contributes to the Debye-Waller
factor, "kx;y � 0 and "kz � 2kbrg cos�i. The rms size of

the atomic cloud is �z � k�1dip
��������������������
kBT=2U0

p
in the harmonic

approximation of the trapping potential. We noticed in
earlier experiments [13,14] that the temperature of the
cloud adopts a fixed ratio with the depth of the dipole
trap, T 	 0:2U0. Therefore, the spatial distribution of the
atoms (and thus the Debye-Waller factor) does not vary
1-2
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FIG. 3. (a) Beat signal recorded while tuning the blue laser
across resonance. The frequencies were chosen such that
"i=�2�
 � 5:4 kHz. (b) Quadrature components of the beat
signal and (c) amplitude profile calculated from the quadrature
components and phase profile as obtained by counting the
number of oscillations in (a) per time interval. (d) Simulated
beat signal spectrum between Bragg-scattered light and a refer-
ence beam using a calculated amplitude and phase profile.
(e) Quadrature components of the Bragg beat demodulated
with the reference beat. (f) Amplitude (dashed line) and phase
profile (solid line) as derived from the quadrature components.
The profiles coincide with the profiles used to calculate the
curves in (d).
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FIG. 2. (a) The quadratic dependence of the Bragg-scattered
power Ps on the atom number N agrees well with Eq. (1).
(b) Absorption spectrum of magneto-optically trapped atoms
showing the hyperfine levels F0 � 2; 3; 4. (c) Bragg reflection
spectrum obtained by ramping the blue laser frequency. Here the
shutter S in Fig. 1 blocked the reference beam. Only the two
strongest hyperfine peaks are visible.
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much with temperature, so that we estimate fDW � 0:8.
Finally, the angle between the polarization of the incident
light and the diffracted wave vector is chosen to be � �
90�. With the above estimations, we calculate for the
scattered power on resonance from Eq. (1) Ps ’ 150 nW.

Figure 2(c) shows a spectrum of the Bragg resonance
obtained by ramping the laser frequency at 420 nm (with
the shutter S closed). Three hyperfine components are
expected in the spectrum, i.e., F0 � 2; 3; 4. However, the
F0 � 2 component is too weak to be seen. Figure 2(b)
shows a MOT absorption spectrum for reference. The
frequency displacement between the spectra is due to the
light shift of the atoms in the dipole trap.

The measured peak power of the Bragg-reflected light is
on the order of Ps;m � 100 pW. During a scan of typically
6 ms duration, the laser spends roughly"t � 1 ms close to
the strongest resonance line, which is sufficient to scatter
"tPs;m= %h!s ’ 200 000 photons. Defining the reflectivity
as the ratio of the scattered power and the fraction of power
incident on the atoms (i.e., reduced in order to account for
the partial overlap between the incident beam and the
atomic cloud), R � Ps;m=�

1
2�wrwzIi
, we obtain for the

amplitude reflection coefficient jrj �
����
R

p
’ 3%.

The discrepancy between the calculated and the mea-
sured Bragg-reflected power, which has also been observed
in [6], is due to a combination of two effects: First, the
dipole-trapped atoms are subject to a position-dependent
Stark shift, which inhomogeneously broadens the Bragg
spectrum. This effect, which depends on the potential
depth U0 and the temperature T, leads to asymmetric
resonance peaks, as seen in Fig. 2(c). From calculations,
we estimate a line broadening of about 10�brg, resulting in
a strong reduction of the Bragg-reflected light peak inten-
sity. Second, incoherent processes occur at a rate of
�Ii=Isat
�1� 4"2brg=�

2
brg


�1 & 0:5 times the elastic scatter-
ing rate. These processes cause heating and optical hyper-
fine pumping. In fact, we observe noticeable depletion of
the lattice when scanning the blue laser over the resonance.
Experimentally, we reduce the light power and increase the
scanning speed to avoid distortion of the line profile due to
heating during a scan.
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The spectroscopy detailed above yields only the abso-
lute value of the reflection coefficient jrj. To also measure
its phase, we phase match the Bragg beam with a reference
laser beam and observe the frequency beat on the PMT
signal. By passing the beam shone onto the atomic cloud,
!i, and the reference beam, !r, through acousto-optic
modulators (see Fig. 1), we can arbitrarily chose the beat
frequency. We expect to see the frequency component
"!i 
 !i �!r in the beat signal. A typical spectrum is
shown in Fig. 3(a).

Laser frequency fluctuations limit the resolution of the
spectrum. On a long time scale the laser emission band-
width is estimated to less than 5 MHz. However, the time
scale on which the spectrum is recorded (a few millisec-
onds) is so short that the acoustic noise does not com-
pletely inhibit phase-sensitive detection.

When light is scattered at an unbound atomic cloud, the
elastic Rayleigh peak is Doppler broadened by the recoil
imparted to the atoms, whose velocities have a Maxwell-
Boltzmann distribution. However, in axial direction the
atoms are localized to less than �z � �dip=2< �brg, so
that the resonance fluorescence spectrum is Dicke nar-
rowed. The rate of inelastic scattering events in which
the vibrational quantum number changes is reduced by
the Lamb-Dicke factor �2nz � 1
�=�z 	 0:01, where nz
is the vibrational quantum number for axial atomic oscil-
lation, �z the oscillation frequency, and � is the recoil
1-3
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frequency. Elastic scattering events involving no change in
vibrational level are favored. The spectrum is thus
Doppler-free, and we do not expect recoil shifts.

The complex scattering amplitude r � jrjei( represents
the global response of the atomic cloud to an incident
laser Ei � Ei0ei!it. Thus the Bragg-scattered light is
given by Es � rEi � jrjEi0e

i!it�i(. While the amplitude
jrj is obtained via simple absorption spectroscopy, ac-
quiring phase information (�t
 needs heterodyning.
Therefore we beat the Bragg-scattered light with a
reference beam Er � Er0ei!rt while scanning over the
resonance I � jEr � Esj

2. We obtain I 	 E2r0 � jrj2E2i0 �
2jrjEr0Ei0 cos�"!it�(
.

In order to calculate amplitude and phase from a beat
signal spectrum shown in Fig. 3(a), we extract the
quadrature and the in-phase component by numerically
demodulating the beat signal with cos"!it and sin"!it.
Low-pass filtering the dc components yields %Us �
�jrjEr0Ei0 sin( and %Uc � jrjEr0Ei0 cos(. Figure 3(b)
shows the quadrature components. Phase and amplitude
follow from rEr0Ei0�t
 � � %Uc

2 � %Us
2
1=2 and tan(�t
 �

� %Us= %Uc. The result is shown in Fig. 3(c). We notice an
absorptive profile for the reflection amplitude, which co-
incides with the profile recorded without heterodyning
(shutter S is closed) [see Fig. 2(c)]. The dispersively
shaped phase profile in Fig. 2(c) exhibits a maximum phase
shift on the order of � and a distortion due to the hyperfine
splitting of the upper level.

To describe the observation, we calculate the complex
reflection coefficient r / � for our lattice and use it to
simulate the beat signal shown in Fig. 3(d). This signal, if
submitted to the same data processing as for the experi-
mental data, yields the curves in Figs. 3(e) and 3(f). In
particular, the amplitude and the phase profile of Fig. 3(f)
exactly recover the calculated complex reflection coeffi-
cient. To compare with the experiment, we adjust the
power values in the modes Er 	 Ei ’ 54 pW. We notice
a good agreement, despite the noise appearing in the
measured data. This noise is due to frequency fluctuations
of the blue laser beam and to variations in the position of
the ring cavity standing wave.

The phase delay is intrinsically connected with the
Rayleigh scattering process, which predicts a phase shift
described by tan( � Im�=Re� � ��brg=2"brg, i.e., the
phase evolves from ( � 0 to �� across the resonance as
shown in Fig. 3(f). Additional phase shifts may, in princi-
ple, result from the finite propagation time of the incident
beam slowed down by refractive index variations in the
optically dense cloud, and from multiple scattering be-
tween the atomic layers. In our case, the finite radial
size of the scattering layers limits the effective number of
layers participating in multiple scattering to Neff � 2wr=
�dip tan�i ’ 160. We estimate our mean density as n �
19390
5� 1011 cm�3. In this thin grating regime, the above
effects are not expected to contribute to the observed
signals. We verified this assumption by calculating the
complex reflection coefficient using a transfer matrix for-
malism [10], and we found identical results.

In conclusion, periodic ordering in atomic clouds can
have dramatic influence on the propagation and scattering
of light. For thin atomic lattices, the Rayleigh scattered
light destructively interferes in all but one direction. The
resonant enhancement of Rayleigh scattering in this direc-
tion provided us with enough intensity to realize a ‘‘Bragg
interferometer’’ in an atomic gas. This method may prove
sufficiently accurate for probing interesting features of
Bragg scattering in the limit where multiple reflections
between adjacent layers are frequent, such as the occur-
rence of photonic band gaps for certain ranges of light
detuning or incident angles [10].

Interferometric techniques are ideally suited for measur-
ing propagation velocities. By supplying different pump
frequencies for the counterpropagating modes, !� � !�,
we can rotate the standing wave in the ring cavity. We
measure the resulting Doppler shift of the light Bragg
scattered at the atomic grating with an accuracy better
than 1%. An interesting application of this method could
be the study of self-organized systems. Under certain cir-
cumstances, atomic ensembles driven by dissipative forces
spontaneously arrange themselves into propagating peri-
odic lattices [15], whose bunching and propagation veloc-
ity could conveniently be detected.
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